Skip to main content  Contents  Index  
 Prev  Up Next  \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section   A.3   Geology: Phases and Components 
 
Subsection   A.3.1   Activities 
 
Definition   A.3.1 . 
 
In geology, a phase  is any physically separable material in the system, such as various minerals or liquids.
 A component  is a chemical compound necessary to make up the phases; these are usually oxides such as Calcium Oxide (\({\rm CaO}\) ) or Silicon Dioxide (\({\rm SiO_2}\) ).
 In a typical application, a geologist knows how to build each phase from the components, and is interested in determining reactions among the different phases.
Activity   A.3.3 . 
 
To study this vector space, each of the three components \(\vec c_1,\vec c_2,\vec c_3\)  may be considered as the three components of a Euclidean vector.
\begin{equation*}
\vec{p}_1 = \left[\begin{array}{c} 3 \\ 1 \\ 2 \end{array}\right],
\vec{p}_2 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right],
\vec{p}_3 = \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right],
\vec{p}_4 = \left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array}\right],
\vec{p}_5 = \left[\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right].
\end{equation*}
  Determine if the set of phases is linearly dependent or linearly independent.
Activity   A.3.4 . 
 
Geologists are interested in knowing all the possible chemical reactions among the 5 phases:
\begin{equation*}
\vec{p}_1 = \mathrm{Ca_3MgSi_2O_8} = \left[\begin{array}{c} 3 \\ 1 \\ 2 \end{array}\right] \hspace{1em}
\vec{p}_2 = \mathrm{CaMgSiO_4} = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] \hspace{1em}
\vec{p}_3 = \mathrm{CaSiO_3} =  \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right]
\end{equation*}
\begin{equation*}
\vec{p}_4 = \mathrm{CaMgSi_2O_6} = \left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array}\right] \hspace{1em}
\vec{p}_5 = \mathrm{Ca_2MgSi_2O_7} = \left[\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right].
\end{equation*}
That is, they want to find numbers \(x_1,x_2,x_3,x_4,x_5\)  such that
\begin{equation*}
x_1\vec{p}_1+x_2\vec{p}_2+x_3\vec{p}_3+x_4\vec{p}_4+x_5\vec{p}_5 = 0.
\end{equation*}
  
(a)  
Set up a system of equations equivalent to this vector equation.
(b)  
Find a basis for its solution space.
(c)  
Interpret each basis vector as a vector equation and a chemical equation.
Activity   A.3.5 . 
 
We found two basis vectors \(\left[\begin{array}{c} 1 \\ -2 \\ -2 \\ 1 \\ 0 \end{array}\right]\)  and \(\left[\begin{array}{c} 0 \\ -1 \\ -1 \\ 0 \\ 1 \end{array}\right]\text{,}\)  corresponding to the vector and chemical equations
\begin{align*}
2\vec{p}_2 + 2 \vec{p}_3 &= \vec{p}_1 + \vec{p}_4 & 2{\rm CaMgSiO_4}+2{\rm CaSiO_3}&={\rm Ca_3MgSi_2O_8}+{\rm CaMgSi_2O_6}\\
\vec{p}_2 +\vec{p}_3 &= \vec{p}_5 &  {\rm CaMgSiO_4} + {\rm CaSiO_3} &= {\rm Ca_2MgSi_2O_7}
\end{align*}
  Combine the basis vectors to produce a chemical equation among the five phases that does not involve \(\vec{p}_2 = {\rm CaMgSiO_4}\text{.}\)